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ABSTRACT

The cutting proéess is a major material removal process. Hence, it is important to search
for ways of detecting tool failure. This paper describes results of the application of
Adaptive-Network-based Fuzzy Inference System(ANFIS) for tool failure detection in a
single point turning operation. In turning operation, wear and failure of the tool are usually
monitored by measuring cutting force, load current, vibration, acoustic emission(AE) and
temperature. One of them, the AE signal and cutting force signal provides useful information
concerning the tool failure condition. Therefore, five input parameters of the combined two
kinds of signals(AE signal and cutting force single) have been used in the ANFIS model to
detect the tool state. In this model, We adopted three different types of membership functions
for analysis in ANFIS training and compared their differences regarding the accuracy rate of
the tool state detection. The obtained result for successful classification of tool state with
respect to only two classes(normal or failure) has highly correct rate. The results also indicate
that the triangular MF and generalized bell MF have higher correct rate of detection.
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1. Introduction

The development of efficiency, productivity and high quality in the manufacturing
industry, tool failure is highly undesirable because it severely degrades the quality of
machined surfaces and causes undesirable and unpredictable change in work geometry.
‘Therefore, the detection of tool failure plays most important roles in improving reliability and
to promoting automation of manufacturing processes.

Various methods[1] for tool failure detection have been proposed and evaluated in the
past, even though none of these methods were universally successful due to the complex
nature of machining processes. Generally speaking, these methods can be classified into two
categories, namely direct and indirect methods. The direct method can be implemented by
means of optical devices to measure the geometry and to recognize the morphology of wear
land. ITV camera[2] is a typical equipment employed to monitor the tool failure. Jean and
Kim[3] used the optoelectronic method for on-line monitoring of the flank wear of cutting
tools. The serious problem of the techniques which directly measure the dimensions of tool
wear zone, is that it is very difficult to get on-line measurement of the very small wear zone
under shop environments. The indirect methods is based on the acquisition of a variable
process from which tool wear or tool failure can be estimated by using a known relationship.
Liang and Dornfeld[4] detect the tool wear by time series analysis of acoustic emission. In
their study, a signal processing scheme is developed, which uses an autoregressive time-series
to model the acoustic emission generated during cutting. Cuppini etc. [5] analyzed tool wear
based on cutting power measurement. The implementation of a continuous indirect method
based on experiment relationships between wear and cutting power has been described.
Ravindra etc. [6] developed a mathematical model to describe the wear-time and the
wear-force relationships during turning operation. Cutting force components have been found
to correlate well with progressive wear and tool failure. It also eliminates variation in material
properties, which was identified as a major noise source in signals measured during
machining. Moriwaki[7], in his study, the acoustic emission monitoring was applied to
in-process detection of the tool failure during the interrupted cutting on a NC lathe which the
feed was automatically stopped. The acoustic emission signals were also measured during the
static and the dynamic fractures of the tool materials and compared with those associated with
the failures during the metal cutting. Most of the indirect methods suffer from the fact that the
measurements are influenced not only by tool wear but also by various process parameters,
such as the geometry of the cutting tool and the cutting condition.

Recently, the application of neural networks to detecting tool failure has attracted great
interest. The superior learning, the noise suppression, and the parallel computation abilities
are the major advantages of the neural network method. Lin and Ting[8] used a neural
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network method to integrate information from dynamometer and cutting parameters including
spindle rotational speed, feedrate, and drill diameter in order to estimate tool wear. Dornfeld[9]
described the design and implementation of a neural network-based system combining the
outputs of several sensors(an acoustic emission, force and spindle motor current) for
monitoring progressive tool wear in a single point turning operation. Prohaszka[10] studied
different approaches to apply neural network techniques for modelling and monitoring of
machining processes(turning, milling) by sensor integration. Back propagation networks are
used for state classification of tools, estimation of the tool wear and inverse modelling of the
cutting process. Das etc.[11] used the back propagation algorithm for training the neural
network of 5-3-1 structure. The technique shows close matching of estimation of average
flank wear and directly measured wear value.

Based on the above mentioned studies, it can be seen that most studies regarding the
detection of cutting tool state obtained such items as the tool failure and the tool wear
value from experiment measurement or neural network training system. Very few
researchers used the adaptive-network based fuzzy inference system(ANFIS) to detect the
tool failure. Further, the impact of different membership functions which are utilized in
the ANFIS model on the correct rate of ~detection was not investigated yet.

In this paper, we try to investigate the possibility and effectiveness of detecting
cutting tool failure with a new approach method called adaptive network based fuzzy
inference system(ANFIS). Five cutting parameters of two kinds of monitored signals(AE
signal and cutting force signal) have been selected, The parameters and their meanings are
listed in Table 1[12]. Based on these five cutting parameters, and another important
parameter-tool state(failure tool or normal tool), we investigate how to use ANFIS for tool
failure detecting. In this model, We adopted three different types of membership functions
for analysis in ANFIS training and compared their differences regarding the accuracy rate
of the tool state detection. The obtained result for successful classification of tool state
with respect to only two classes(normal or failure) has highly correct rate. The results also
indicate that the triangular MF and generalized bell MF have higher correct rate of
detection.

2. Theoretical foundation

In this section, we will describe primarily the ANFIS architecture and its learning
algorithm for the Sugeno fuzzy model[13]. For simplicity, we assume the fuzzy inference
system under consideration has two inputs m and n and one output f. For a first-order
Sugeno fuzzy model, a typical rule set with two fuzzy if —then rules can be expressed as:

Rulel : If(misA,)and (nisB,)thenf,=p, m+q,n+r, (2.1)
Rule2 : If(misA,)and (nisB, )thenf,=p, m+q,n+r, (2.2)
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Wherep, * p, * q,* q, * randr, arelinear parameter. A

B, are nonlinear parameter.

5 I‘Az‘Bland

The corresponding equivalent ANFIS architecture is as shown in Fig. 1. The entire
system architecture consists of five layers, namely, the fuzzy layer, product layer,
normalized layer, de-fuzzy layer and total output layer. The following sections discuss in
depth the relationship between the output and input of each layer in ANFIS.

Layer 1 is the fuzzy layer, in which m and n are the input of nodes A, B, and A,, B,,
respectively. Aj, A,, B; and B, are the linguistic labels used in the fuzzy theory for
dividing the membership functions. The membership relationship between the output and
input functions of this layer can be expressed as below:

Ol,i"“Ai(m) 1=1,2 |
. 2.3
Ol:_]:uBJ(n) 93:132 ( )

where O Li and O;; denote the output functions and p, and M, denote the

membership functions.

Layer 2 is the product layer that consists of two nodes labeled II. The output W1 and
W2 are the weight functions of the next layer. The output of this layer is the product of the
input signal, which is defined as follows:

O, =w, =M, (m g (0) ,1=1,2 (2.4)
where O, ; denotes the output of Layer 2.

The third layer is the normalized layer, whose nodes are labeled N. Its function is to

normalize the weight function in the following process:

W.
0, =W, =—-=— ,i=1,2 (2.5)
»1 1 W1+W2

where O;; denotes the Layer 3 output.

The fourth layer is the de-fuzzy layer, whose nodes are adaptive. The output
equation is W (pm+qn+r), where p;, q; and r; denote the linear parameters or so-called
consequent parameters of the node. The de-fuzzy relationship between the input and
output of this layer can be defined as follows: ' '

O4i="w"ifi='v7i(pim+qin+ri) ,i=1,2 (2.6)
where Oy denotes the Layer 4 output.
The fifth layer is the total output layer, whose node is labeled as X. The output of
this layer is the total of input signals, which represents the tool state (normal or failure)
detection result. The results can be written as below:
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>.w.f.

O,.=Xwf=-111 ,i=1,2 (2.7)
5,1 111y w

i i

where Os; denotes the Layer 5 output.

3. Experimental equipment and procedure

The experimental setup for in-process detection of the tool failure schematically
illustrated in Fig. 2 [12]. A NC lathe was employed for the interrupted cutting of an alloy
steel plate which was fixed to the work holder and was turned- by employing a
longitudinal feed. The cutting tool used in this test is the carbide tool p20 and the cutting
speed, the depth of cut and the feed are 250 m/min, 1.5 mm and 0.3 mm/rev respectively.
A commercially available acoustic emission sensor was attached to the end of the tool
shank employing a magnet. The frequency range of the sensor employed for the cutting
test was 50 KHz-1 MHz. The sensed AE signal was amplified to employ the pre-amplifier,
and then passed through the band pass filter which had a wide frequency range of pass
band from 20 KHz- 1 MHz. Cutting force signal was monitored by cutting force recorder,
then recorded by data recorded, and handled with computer after being changed by A/D.

Table 2 shows the experimental results of the six parameters. The
experimental results will be used in ANFIS model for training and testing. In each cutting
cycle, 30 signals were recorded. So 30 data groups were obtained, each of which has five
continuous values(parameters Sx, Sy, Sz, Dx and Dy)and one discrete value(parameter
Dz). The meaning of the Dz(tool state)in Table 2 is the result of the detection from the
cutting process. “0” means the tool is normal, and “1” means the tool is failed[14].

4, Resulfs and Discussion

In this paper, we randomly selected 24 sets of data from the 30 sets (as listed in Table
2) obtained from the cutting experiment. We input these 24 sets data in ANFIS for
training. After training is completed, the remaining 6 sets data were used in a test to
validate the accuracy of the detection of tool state(normal or failure). Fig. 3 shows the
flowchart of using ANFIS to detect tool state.

Fig. 4 shows the fuzzy rule architecture of the ANFIS that adopts the triangular
membership function. There are a total of 243 fuzzy rules in the architecture. During
the training in ANFIS, 24 sets of experimental data were used to conduct 200 times of
learning. The step size for parameter adaptation had an initial value of 0.01. The step
size adaptation figure for the cutting parameters from the training results is shown in Fig.
5. Among the architecture, each input parameter’s membership function is divided into
three regions, namely, the small, medium and large regions. Figures 6 to 10 show the
initial and final membership functions of the five experimental cutting parameters derived
by the triangular membership function training. Fig. 6 shows little change between the
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initial and final membership functions of cutting parameter Sx. However, in Fig. 7,
which shows the initial and final membership functions of cutting parameter Sy, we can
see a considerable change in the final membership function after training. The change is
especially evident in the small region and large region. Fig. 8 shows the initial and final
membership functions of cutting parameter Sz. It also shows a distinctive change in the
final membership function of Sz. Though the change is also present in the medium and
large regions, it is greater in the small region. Fig. 9 shows the initial and final
membership functions of cutting parameter Dx. As shown in this figure, the change of
the final membership function is more evident in the medium region than in the small
region. As for the parameter Dy, Fig. 10 shows a more evident change of the final
membership function in the medium region and a slight change in the large region. The
analysis from the above five figures indicates that the factor among the cutting parameters
bearing the most impact on tool state detection is Sy, followed by Sz. This phenomenon is
evident from the above figures showing the final membership functions of these
parameters.

Figures 11 to 15 show the initial and final membership functions of the .cutting
parameters Sx, Sy, Sz, Dx and Dy derived from the bell membership function. Among these
figures, we find that changes of the final membership function of cutting parameter Sy in Fig.
12 and that of Sz in Fig. 13 are most distinctive of all. As shown in Fig. 12, there is
considerable change, especially in the small region, in the final membership function of Sy as
compared with the initial membership function, more than the final membership function of
any other parameters. This analytical result is the same as that concluded from Fig. 7. Fig. 13
shows the initial and final membership functions of cutting parameter Sz. It is easy to detect
from this figure that changes also occur in the small and large regions of the final membership
function. Besides, we also learn from changes of the final membership functions shown in
Figures 15 and 16 that parameter Dy has a greater impact on tool state detection than
parameter Dx.

Figures 16 to 20 show the initial and final membership functions of the cutting
parameters Sx, Sy, Sz, Dx and Dy derived from the trapezoidal ~membership function. The
physical phenomena shown in these figures are similar to those shown in Figures 6 to 10 and
Figures 11 to 15. In other words, changes of the final membership function of cutting
parameter Sy in Fig. 17 and that of Sz in Fig. 18 are the most distinctive among this set of five
figures. Based on the above results and discussions, we know that regardless of the type of
membership function adopted for training analysis, the physical phenomena obtained are
more or less identical. That is, parameters Sy and Sz have a greater impact on tool state
detection, and parameter Dy has a greater effect on tool state detection than Dx.

Table 3 lists the measure values and estimate values derived from the simulation of tool
failure detection by ANFIS through the adoption of different membership functions. Among
the 30 sets of cutting experimental data, 24 sets were randomly selected for training. The

remaining 6 data sets were used as testing data. By entering the five cutting parameters of any
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of the 6 data sets into the already trained ANFIS, we obtain an output value. This output value
is then used to determine whether the tool is normal or has failed. ANFIS outputs are not
binary, but rounded. In other words, ANFIS predicted values below 0.5 are rounded to 0,
which indicates the tool is normal. On the contrary, those values above and including 0.5 are
approximated to 1, which indicates tool failure [15]. The results are presented in Table 3.
Based on the above judgement criteria, results shown in Table 3 indicate that the adoption of
iriangular or bell membership function in ANFIS obtained a 100% accurate tool state
detection rate, whereas the adoption of trapezoidal membership function only achieved a 67%
accuracy rate. Based on these results, the 100% accurate tool state detection rate may have
been the result of only 6 sets of testing data. Given more testing data sets, the results may
come closer to the actual phenomena. Nevertheless, we can still draw a conclusion from the
results shown in Table 3. That is, by adopting the triangular or bell membership function to
conduct system training, ANFIS can obtain a higher accuracy rate of tool state detection.

5. Conclusion

In this study, we used ANFIS to conduct training, and tested the accuracy rate of tool
state detection. We adopted three different types of membership functions for analysis in
ANFIS training and compared their differences regarding the accuracy rate of the tool
state detection. Based on the above descriptions and discussions, we ‘may draw the
following conclusions:

1. In our analytical model, by adopting the triangular or bell membership function to
conduct system training, ANFIS can obtain a higher tool state detection accuracy rate.

2. Among the five cutting parameters, parameter Sy as the greatest impact on tool state
detection, followed by Sz. Besides, parameter Dy has a greater impact than Dx.

3. The combination of AE signals and cutting force signals can be used effectively in the
detection of tool state (normal or failure).
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Table 1 parameters used in ANFIS [12]
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Parameter Meaning
- Sx average RMS of AE
Sy maximum amplitude of demodulated AE
Sz averaged amplitude of AE ]
Dx mean main force
Dy ratio of feed force to main force
Dz tool state ( normal tool or failure tool)

Table2 Experimental results of AE and cutting force signals

Experimental results
Test No. I
Sx Sy Sz Dx Dy Dz

1 8.010 0.057 0.139 1.180 0.510 0
2 10.31 0.043 0.167 1.090 0.470 0
3 12.57 0.056 0.049 1.000 0.500 0
4 18.03 0.089 0.117 0.930 0.550 0
5 25.11 0.071 0.088 1.110 0.600 0
6 32.00 0.083 0.128 1.250 0.490 0
7 32.18 0.100 0.115 1.170 0.530 0
8 4191 0.093 0.100 0.990 0.600 0
9 50.71 0.125 0.065 1.200 0.630 0
10 50.01 0.131 0.080 1.080 0.590 0
11 49.88 0.107 0.104 1.000 0.710 0
12 43.01 0.111 0.098 1.050 0.720 0
13 39.57 0.122 0.157 1.200 0.690 0
14 37.53 0.250 0.360 1.410 0.800 1
15 53.69 0.201 0.261 1.380 0.750 1
16 40.17 0.213 0.202 1.270 0.830 1
17 35.99 0.266 0.271 1.300 0.850 1
18 47.36 0.289 0.197 1.420 0.700 1
19 54.51 0.199 0.248 1.490 0.750 1
20 53.73 0.358 0.224 1.290 0.880 1
21 51.94 0.271 0.348 1.500 0.810 1
22 40.00 0.353 0.313 1.470 0.800 1
23 39.65 0.375 0.200 1.220 0.890 1
24 48.01 0.277 0.256 1.530 0.930 1
25 28.01 0.158 0.163 1.210 0.800 0
26 44.55 0.130 0.109 1.190 0.780 0
27 47.11 0.171 0.200 1.000 0.600 0
28 47.77 0.300 0.219 1.520 0.830 1
. 29 43.17 0.291 0308 1.380 0.900 1
30 29.81 0.250 0.195 1.410 0.900 1
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Table 3 Comparison of tool state measured and estimated from ANFIS trained with

different MF
Experimental  results Membership function type
Test No .
Sx Sy Sz Dx Dy Dz trangular | trapezoidal bell
Vi 28.01 0.158 0.163 1.210 0.800 0 0.3153 (0) | 0.5195(1) | 0.3294 (0)
V2 44.55 0.130 0.190 1.190 0.780 0 0.1463 (0) | 0.0650 (0) { 0.1226 (0)
V3 47.11 0.171 0.200 1.000 0.600 0 0.0550 (0) | 0.00165 (0) | 0.0546 (0)
A2 47.77 0.300 0.219 1.520 0.830 1 0.9438 (1) | 1.03600 (1) | 1.0509 (1)
A 43.17 0.291 0.308 1.380 0.900 1 1.0118 (1) | 0.62820 (1) | 0.7997 (1)
V6 29.81 0.250 0.195 1.410 0900 |1 0.6376 (1) | 0.35110 (0) | 0.6636 (1)
correct rate 100% 67 % 100%
Layer 1 Layer 2 Layer3 Layer4 Layer5
x Yy
A1 v
X W
A2 f
B1
y w.f
B2 )
x Y

Adaptive node

Fixed node

Fig. 1. ANFIS architecture
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Fig. 6. Initial and final trangular MF of cutting parameter Sx
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Fig. 7. Initial and final trangular MF of cutting parameter Sy
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Fig.8. Initial and final trangular MF of cutting parameter Sz
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Fig.9. Initial and final trangular MF of cutting parameter Dx
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Initial Membership Function Dy Figure
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Fig.10. Initial and final trangular MF of cutting parameter Dy
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Fig.11. Initial and final bell MF of cutting parameter Sx
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Fig.12. Initial and final bell MF of cutﬁng parameter Sy
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Fig.13. Initial and final bell MF of cutting parameter Sz
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Initial Membership Function Dx Figure
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Fig.14. Initial and final bell MF of cutting parameter Dx
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Fig.15. Initial and final bell MF of cutting parameter Dy
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Fig.16. Initial and final trapzoidal MF of cutting parameter Sx
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Fig.17. Initial and final trapzoidal MF of cutting parameter Sy
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Initial Membership Function Sz Figure
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Fig.18. Initial and final trapzoidal MF of cutting parameter Sz
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Fig.19. Initial and final trapzoidal MF of cutting parameter Dx
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Fig.20. Initial and final trapzoidal MF of cutting parameter Dy
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