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Abstract 
      In reverse engineering, rebuilding a surface more precisely requires more data to be handled. Such a 
large amount of data cannot be treated using a CAD/CAM system. This study applies orthogonal polynomial 
functions to rebuild a surface. Fewer data are used to rebuild a surface and the performance of smooth error is 
compared to that of the NURBS algorithm. The proposed numerical method efficiently derives the coefficients. 
It requires only specified data sets to calculate the coefficients of the orthogonal function. The desired data set is 
determined by Lagrange interpolation method and a least square method is presented to determine the exact 
coefficients from linear simultaneous equations. The results show that the approximation error obtained using 
orthogonal polynomial functions to rebuild a continuous free surface are lower than obtained when the NURBS 
method is used. 
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Ⅰ. Introduction 

Conventionally, the manufacturing of products begins with an engineering drawing and 
ends with the manufacturing of the product according to the specifications in that drawing. In 
reverse engineering, computer-controlled measuring machines or high-resolution laser 
scanning machines are used by designers to create and/or modify the design of an existing 
object. Reverse engineering includes four stages (1) extracting surface data; (2) processing 
extracted data processing; (3) reconstructing the surface, and (4) generating a CNC part 
program. The non-uniform rational B-spline surface algorithm (NURBS) is the most popular 
and widely accepted method for rebuilding free-form surface. The many disadvantages of a 
surface reconstruction system include having to handle too many data, difficulties in handling 
common geometric and difficulties in treating complicated surfaces. This study uses 
orthogonal polynomial functions to reduce the amount of data to rebuild the free-form surface 
more quickly and precisely.  

Over recent years, several researchers have focused on particular points and parameters 
that affect the rebuilding of a surface.[1-3] Pahk et al.[4] developed an interactive system for 
inspecting form molds with sculptured surfaces. The measured data were adjusted using a 
calculated form error, and the evaluated errors were displayed graphically. All of these studies 
involved many data to construct the surfaces. This study considers the use of orthogonal 
functions to construct free-form surfaces. Orthogonal functions have been proven to be able to 
approach any functions.[5] However, their coefficients are difficult to be determined. 
Orthogonal functions have recently been used to build neural networks that can learn 
mappings between input and output data. The defined training algorithm will learn the exact 
coefficients (or weights of the neural network). Huang and Cheng[5] applied the 
approximation theory of orthogonal functions to construct a neural network. The training 
algorithm derived from the least-squared algorithm converged faster than traditional 
backpropagation methods. Yang and Tseng[6,7] developed a single-layer orthogonal neural 
network(ONN) whose processing elements were based on orthogonal functions. This network 
did not suffer from the problems associated with traditional feed-forward neural networks, 
including the need to determine the initial weights and the number of layers and processing 
elements. Mai et al.[8] applied an orthogonal neural network to build a learning controller for 
balancing the ball beam system. Sher et al.[9] compared five existing orthogonal functions, 
and found that Legendre polynomials and Chebyshev polynomials of the first kind were 
suitable for generating the neural network, because of their properties of recursion and 
completeness. 

This article presents a numerical method for determining the coefficients of the 
orthogonal function used to rebuild free-from surfaces. The performance of this method is 
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compared to that of the NURBS algorithm. The proposed numerical method efficiently 
derives the coefficients. It requires only n+1 specified data sets to calculate the n coefficients 
of the orthogonal function with n terms. The desired data set is determined by Lagrange 
interpolation method and a least square method is presented to determine the exact 
coefficients from linear simultaneous equations.  

An illustrative example of the SURFACER software is selected to confirm the 
performance of the proposed method in rebuilding free-form surfaces. The results indicate 
that the approximation error associated with using orthogonal polynomial functions to rebuild 
a free surface is less than that obtained using the NURBS method. 

 

Ⅱ. Theory of Orthogonal Functions 

According to the theory of orthogonal functions,[10,11] an arbitrary function )(xf , f:[a, 
b] →ℜ, will have an orthogonal polynomial  
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{ }⋅⋅⋅,)(),( 21 xx φφ  is an orthogonal set. 

The above equations show that a single-variable function f(x) can be approximated by an 
orthogonal function set and the coefficient, iω , is unique. Equation (3) shows that the 
coefficient, iω , will not be available from the integration if function )(xf  is unknown. For 
approximating multi-variable functions, a multi-variable orthogonal function set can be 
generated by integrating single-variable orthogonal function sets. For example, the 
corresponding r-variable orthogonal function set for a function with r variables will be 
{ }),...(),(),( 321 XXX ΦΦΦ . Each of the orthogonal functions is defined as 
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As described above, an arbitrary multiple - variable function ( )XFy = , 
[ ]TmxxxX 21= , can also be approximated by an orthogonal function set as shown below. 
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where iω  is the coefficient of the orthogonal function )(XiΦ . ( )nXR ,  is the expansion 
error of the orthogonal functions. { })(),(),( 21 XXX nΦΦΦ   is a set of orthogonal 
functions.  

Supposed that there are total m pairs of datum ),( 11 yx , ),( 22 yx ,…, ),( mm yx , then Eq. 
(1) becomes 

 
)()()( 1100 xxxY nnφωφωφω +++=                                       (6) 

  
We will find the value of iω , the coefficient of the orthogonal function )(xiφ , so that Eq. 

(6) will be able to approach all the given data. Here we apply the least-square approximation 
method to find the value of iω . Let S represent the square error.  

 
                                                         (7) 
   
 

The extreme value of S can be obtained by letting the first-order derivation of S equal to 
zero. That is 
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Rewrite the above equation and we get 
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The above equation can be written in a matrix form. That is  
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  In order to get the coefficients, nωωωω ,,,, 210  , the linear simultaneous equations of Eq. 
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(10) have to be solved, which will take a lot of computing time.  
There are several orthogonal functions such as Fourier Series, Bessel Function, Legendre 

Polynomials, and Chebyshev Polynomials. Each of them has its application domain in 
function approximation. For example, Fourier series is suited to approximate sine/cosine 
functions. However, it does not have the property of completeness. In other words, there is no 
guarantee that the approximation of function will be converged. Here Chebyshev polynomials 
of the first kind is chosen as the orthogonal functions because they have recursive property 
and completeness property at the boundary points of their definition intervals. The recursive 
property results from an expansion term being determined by its previous two expansion 
terms and it is desired to generate the structure of the ONN with the same processing 
elements.[11] 

According to the theory of orthogonal functions[7,12], Chebyshev polynomials of the form 
)(~ xnΦ , 1≥n , have the property that 
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denotes the Lagrange interpolating polynomial. Equation (11) is used to determine the 
interpolating nodes to minimize the error in Lagrange interpolation. In Lagrange interpolation, 
suppose that nxxx ,,, 10   are distinct numbers in the interval [-1,1] and function )(xf  has 
n+1 continuous derivatives in the same interval. Then, for each ∈x [-1,1], a number )(xξ  
exists in (-1,1), which satisfies the following equation. 
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  There is no control over )(xξ . To minimize the expected error by shrewd placement of 
the nodes nxxx ,,, 10   would be equivalent to finding the values of nxxx ,,, 10   to 
minimize the magnitude of )())(( 10 nxxxxxx −−−   .                                         
 

Since )())(( 10 nxxxxxx −−−   is a monic polynomial of degree (n+1), the 
minimum value is obtained if and only if 
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where kx , k = 0, 1, ..., n, is chosen to be the (k+1)th zero of )(~

1 xn+Φ . That is, the value of 
Eq. (13) will be minimized if kx  is chosen to be  
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in the interval [-1,1] will satisfy  
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Therefore, Eq. (10) is simplified as shown below.  
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Solve Eq. (16) and the coefficients of the Chebyshev polynomial will be 
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If each variable is extended to n order of Chebyshev polynomials, then the input data for 

each variable is the n+1 roots of the n order Chebyshev polynomials. Therefore, there are 
rn )1( +  input data to solve the rn )1( + coefficients of the r-variables of Chebyshev 

polynomials. Then the coefficients ω  of each Chebyshev polynomials term can express as  
 

∑∑ ∑

∑∑ ∑

= = =

= = =

⋅
= m

i

m

i

m

ri
rji

m

i

m

i

m

ri
riiiririjii

rij

yxxx

11 12 1

11 12 1
21

2
2

2
1

2 )()()(

φφφ

φφφ
ω



 

                        (18) 

 
where i=1…n, j=1…n, r=1…n, and m is the number of pair data. 

Ⅲ. Approximation of Functions 

In this section, we will try to solve the coefficients of Chebyshev polynomials for 
function approximation and compare the result with that of NURBS method. For Chebyshev 
polynomials, the independent variable is defined in the interval [-1, 1]. However, the function 
to be approximated is usually not defined in the same interval. Here by Lagrange's 
interpolation method [12,13] is used to map the range of the input data to the interval [-1, 1]. 
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First we arrange the input data from small to big. If the data are defined in the interval [a, b], 
they are mapped to the interval [-1, 1] by the following equation. 
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According to Eq. (15), we choose the Chebyshev polynomial independent variable ix  

to 
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   By Lagrange's interpolation method, iy  of independent variable ix  can be derived 
from the selected data ( 11, yx′ ), ( 22 , yx′ ), ( 33, yx′ ), …, ( mm yx ,′ ). They are 
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  The data ( ii yx , ) can be brought into Eq. (17), to get the Chebyshev polynomial, which is  
 

)()()()( 1100 xxxxY nnΦ++Φ+Φ= ωωω                                (22)  
 

where ∑
=+

=
n

k
ky

n 0
0 1

1ω                                                  (23) 

 

∑
=

⋅Φ
+

=
n

k
kkii yx

n 0

)(
1

2ω ,   i=1,2……n                                     (24) 

 
By Eq. (19), we change the function )(xY  to the original polynomial Y(x)  
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Ⅳ. Example of Surface Rebuilding 

In design and manufacturing, surface modeling is frequently employed to describe 

objects precisely and accurately. The generation of a surface usually depends on quantitative 

data, such as a set of points with known coordinates. In formulating a surface, the designer 

must have the flexibility to use data a simple form. The choice of the surface form depends on 

the application. The numerical method and the NURBS surface are implemented herein. 

Fig. 1 presents the data that describe the surface of a “human face” formed from 
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100x100 points with known x, y and z coordinates. The real curve shown in Fig. 2 is the 

curve x=73.5 in Fig. 1. Ten control points obtained using Eq. (20) are considered to determine 

the coefficients of the orthogonal function with order ten and thus approximate the curve. The 

dotted line in Fig. 2 is generated using the orthogonal function. The small circle represents the 

y coordinates often control points. Clearly, dot line does not approximate the real line closely, 

because an orthogonal function must be of high order to approximate the real curve. The 

fewer points chosen are can be reduced and calculated time, but the more errors caused will 

be. The dotted line in Fig. 3 is generated from an orthogonal function of order 20 and twenty 

control points by trial and error method. It is almost exactly coincides with the real line.  

These results indicate that an orthogonal function determined by 10x10 control points in 

x and y coordinates cannot build a surface that closely matches the original surface in Fig. 1. 

Figure 4 shows the surface generated by the orthogonal function determined by 10X10 

control points. Figure 5 presents the normal deviation between Figs. 1 and 4. The errors 

associated with most points are between 0.3 and -0.3 except associated with those points near 

boundary. Figure 6 shows the surface generated using the orthogonal function determined by 

20X20 control points. The surface in Fig. 6 is much closer than that in Fig. 4 to that in Fig. 1. 

Figure 7 is the normal deviation between figure1 and figure 6. Most normal error are between 

0.1 and -0.1 except points near boundary effect by the discontinuous function 

Figure 8 shows the NURBS surface determined by the same 100X100 points as in Fig. 1; 

the orders of u and v are both four. Table 1 presents the mean of the absolute errors and 

root-mean-square normalized errors among Figs. 5, 7 and 9. The root-mean-square 

normalized errors are defined as: 
 

2N

1i
ms )(

N
1E ∑

=

−= iBim pp                                                  (26) 

 
where N denotes the number of original measured data points. Pim is the originally 

measured data point. PiB is the relative data point of Pim on the generalized. 
The use of the orthogonal polynomial function to rebuild a free form surface requires fewer 

points and yields smaller error. Comparing the performance of the orthogonal function and of 
NURBS reveals that the NURBS requires more points to build the surface and is not affected 
by the boundary in Fig.1. 
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Fig. 1. The surface formed by 100X100 points Fig. 2. Dotted line is the orthogonal function of  

order 10 , circle is the control points, the 
line curve is at x=73.5 of Fig. 1 
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Fig. 3. The orthogonal function of order 20,  

dotted line has already overlapped with 
the curve 

Fig. 4. The surface built by 10X10 control points 

  
  
  

  
Fig. 5. The approximation error of 10X10 points Fig. 6. The surface built by 20X20 control points 
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Fig. 7. The approximation error of 20X20 points Fig. 8. The 100X100 points built surface by 
NURBS 

  
  
  

 

 
 

Table 1. Error comparisons of Figs. 5, 7 and 9. 
 

 
10X10  
elemen

ts 

20X20 
elements NURBS 

The mean of the 
absolute value 

error 

0.2418
3 0.10492 0.11366 

Root-mean-squa
re normalized 

error 

0.2561
4 0.09548 0.09134 

 

Fig. 9. The approximation error of 100X100 
points 

 

Ⅴ. Conclusion 

This study presented a numerical method for determine the coefficients of an orthogonal 
function, which is applied to approximate high-order curves and surfaces. The proposed 
numerical method efficiently derives the coefficients. It requires only specified data sets to 
calculate the coefficients of the orthogonal function. The desired data set is determined by 
Lagrange interpolation method and a least square method is presented to determine the exact 
coefficients from linear simultaneous equations. This study uses orthogonal polynomial 
functions to reduce the amount of data to rebuild the free-form surface more quickly and 
precisely. The orthogonal polynomial function appears to have advantages over the NURBS 
method, as it requires fewer control points and generates surfaces more efficiently. However, 
its approximation error is larger than that of the NURBS method on the boundary of the 
production, because function is discontinuous on the boundary. Using more control points to 
determine the orthogonal function can reduce the approximation error. 
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摘 要 
在逆向工程中，重建精確的曲面需處理大量的數據。 如此過多的數據無法應用於CAD/CAM

系統,中。本研究利用正交多項式函數來重建曲面，利用較少的數據來快速重建曲面，表面誤差

結果並與利用非均勻比例 B-函數曲線平面（NURBS）法則進行比較。所提出的數值法僅需特定

資料點就可有效的導出正交多項式函數的係數，利用拉格南吉內插法可得特定資料點，經由最小

平方法求解線性聯立方程式獲得正確係數值。結果顯示利用正交多項式函數由少數資料點重建的

連續函數曲面，並不亞於經由非均勻比例 B-函數曲線平面（NURBS）法則，運算龐大資料點所

作的結果。 

 
關鍵字：NURBS，正交函數，逆向工程，曲面重建 
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